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of maximum density of the pure solvents. The lat­
ter property is an indication of the relative struc­
tural strengths of the two liquids. 

The suggestion has been made by Harned and 
Embree61 that comparisons of acid strength should 
be made at 6 rather than at some arbitrary temper­
ature like 298°. There appears to be no advantage 
in this so far as pKg values are concerned, and com­
parisons of AF% = -2.302§R6(pK,,) are not at all as 
favorable as those at some constant temperature 
because of the variable factor 6. The entropy 
change at 0 shows the same behavior as pKe (or 
even pK2K) since AS% = 2.3026-R(^).60 Thus 

(61) H. S. Harned and N. D. Embree, T H I S JOURNAL, 56, 1050 
(1934). 

In general, the diffusion of either solute in a solu­
tion containing three components depends on the 
concentration gradients of both solutes, four diffu­
sion coefficients being required to describe the 
system. This interaction or coupling of flows is 
conveniently represented by a modified form2'3 

of Onsager's4 phenomenological flow equations. 
Data illustrating such interaction in two electro­
lyte systems have recently3 been obtained using the 
Gouy diffusiometer. 

In recent papers two procedures were developed 
for computing the four diffusion coefficients, but 
they are subject to certain limitations. A general 
method2 utilizing reduced second and fourth mo­
ments, £)2m and SD|m, of the refractive index gradi­
ent curves from two experiments is limited because 
of experimental inaccuracy in the reduced fourth 
moments. A second procedure3 in which values of 
the diffusion coefficients are selected to reproduce 
best the observed fringe deviation graphs and re­
duced height-area ratios, S)A. of at least two experi­
ments gives good results when it is applicable; 
however, it is based on series expansions for the 
concentration curves which are applicable only 
when one cross-term diffusion coefficient is suffi­
ciently small. 

(1) On leave from the Department of Fisheries, Faculty of Agricul­
ture, Kyoto University, Maizuru, Japan. 

(2) R. L. Baldwin, P. J. Dunlop and L.J. Gosting, T H I S JOURNAL, 77, 
5235 (1955). 

(3) P. J. Dunlop and L. J. Gosting, ibid., 77, 5238 (1955). 
(4) L. Onsager, Ann. N. Y. Acad. Set., 46, 241 (1945). 

chain branching and lengthening effects all but 
disappear when entropy changes are compared at 
6»°. At 298.160K. the entropy of ionization of 
acetyl-DL-alanine is 1.8 units more negative than 
that of acetylglycine. At 277.4°K. the tempera­
ture of maximum ionization constant for the 
branched chain acid, the ice-like ordered structure 
of the solvent predominates and less change in ori­
entation of water can be produced as a result of 
ionization. The entropy of ionization of acetylala-
nine at this temperature therefore is less negative 
than that at 298.16° and differs from that of acetyl-
glycine at its temperature of maximum ionization 
(294.3°) by only 0.13 unit. 

NEW YORK, N. Y. 

Using the exact solutions derived below for the 
solute concentration distributions in free diffusion, 
new procedures are devised for calculating the four 
diffusion coefficients. The general method utiliz­
ing values of DA and £>2m should be more accurate 
than the earlier procedure utilizing 2)2m and Z>2

im, 
because SDA can be measured much more accurately 
than X>lm. The new second method, which de­
pends primarily on values of £>A and the fringe de­
viation graphs, has the advantage that neither 
cross-term diffusion coefficient need be small. 

Theory 
Basic Equations.—The equations for one-dimen­

sional diffusion in a three-component system are 
written6 

bT - A l a? + Da -W ( 1 ) 

Tt - Da ^e + Dn -^ ( 2 ) 

in which solute concentrations & and C2 are func­
tions of position x and time t, Dn and .D22 are the 
main diffusion coefficients, and £>i2 and Z>2i are the 
cross-term diffusion coefficients. For free diffu-

(5) These equations are obtained by substituting the flow equations 
1 and 2 of ref. 3 into the continuity equations. I t is here assumed that 
the diffusion coefficients are all independent of concentration and that 
no volume change occurs on mixing. These conditions may be ap­
proached experimentally by making the concentration differences 
across the initial boundary sufficiently small. The reader is referred 
to refs. 2 and 3 for a more detailed description of the flow equations 
and the conditions under which they are valid. 
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An Exact Solution of the Equations for Free Diffusion in Three-component Systems 
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A rigorous solution of the differential equations for one-dimensional free diffusion is obtained for a three-component 
system in which the solute flows interact; the only assumptions are that the volume change on mixing and the concentration 
dependence of the diffusion coefficients are negligibly small. Based on this solution, a general procedure is developed for 
computing the four diffusion coefficients from data for the reduced height-area ratios, S)A, and reduced second moments, 
332m, of the refractive index gradient curves of two or more experiments. An additional procedure for calculating the coef­
ficients is devised which depends primarily on measurements of £>A and the fringe deviation graphs obtained with the Gouy 
diffusiometer. These procedures are applied to recently reported data for free diffusion in aqueous solutions of mixtures of 
(1) LiCl and KCl and (2) LiCl and NaCl. New values for the four diffusion coefficients of each system are reported and 
compared with those obtained using the previous methods of calculation. 
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s ion a s h a r p b o u n d a r y is f o r m e d a t t = 0 b e t w e e n 
s o l u t i o n s A a n d B w h i c h a r e a b o v e a n d be low, r e ­
spec t ive ly , t h e pos i t ion x = 0. T h e r e f o r e t h e ini­
t i a l c o n d i t i o n s for t h e t w o so lu tes (i = 1,2) a r e 

d = Ci + Ad/2 for x > 0, / = 0 (3) 

d = Ci - Ad/2 for x < 0, * = 0 (4) 

whi le t h e b o u n d a r y c o n d i t i o n s a r e 

d -—> Ci + Ad/2 for x — > c°, / > 0 (5) 

Ci-* Ci - Ad/2 for x—>-=°,/>0 (6) 

H e r e 

Ci = [(Ci)x + ( C O B ] / 2 (7) 

is t h e m e a n c o n c e n t r a t i o n of each so lu t e a n d 

Ad = ( C , ) B - (C,-)A (8) 

is t h e c o n c e n t r a t i o n difference of s o l u t e i ac ross t h e 
diffusing b o u n d a r y . 

I t is wel l k n o w n 6 ' 7 t h a t u n d e r t h e s e in i t i a l a n d 
b o u n d a r y c o n d i t i o n s a n e w v a r i a b l e 

*/(2V0 (9) 

m a y b e i n t r o d u c e d t o r e d u c e e q u a t i o n s 1 a n d 2 to a 
se t of o r d i n a r y different ia l e q u a t i o n s . 

-2yf-Du 
A1C1 

Ay2 + D, 

n AC2 n A2Ci , n 

AK1 

' Ay2 

A2C1 

' Ay2 

(10) 

( H ) 

F u r t h e r m o r e , c o n d i t i o n s 3 - 6 r e d u c e t o 

d >• Ci + Ad/2 for y > cc (12) 

d >- Ci - Ad/2 for y >- - co (13) 

T h e Exact Solut ion for the So lute Concentra­
t i o n s . — F i r s t w e le t 

- D» -Ay- + D" ~Ay 

= D, 
ACi _ AC2 

Jy- + A 2 -Ay-
a n d 

v = y2 

P r o v i d i n g t h a t t h e d e t e r m i n a n t 

A i D1 

(14) 

(15) 

(16) 

P«| = D21 D22 
= DnD22 - D12Dn (17) 

is n o t zero , e q u a t i o n s 14 a n d 15 a r e r e a d i l y so lved 
for dCi/dy a n d dC2 /d;y t o g ive 

in which 

= P = Ha - FB 
Ay 

^ = = -Ga + EB 
Ay 

E = Dn/\Dij\ 
F = D12/\Da\ 

G = D2i/\Dij\ 

H = D22/\Dij\ 

(18) 

(19) 

(20) 

(21) 
(22) 

(23) 

,Subs t i tu t ion of e q u a t i o n s 18 a n d 19 ( a n d t h e i r first 
d e r i v a t i v e s w i t h r e s p e c t t o y) i n t o e q u a t i o n s 10 a n d 

(6) L. Boltzmann, Wied. Ann., S3, 959 (1894), or see W. Jost, "Dif­
fusion in Solids, Liquids, Gases," Academic Press, Inc., New York, 
N. Y., 19S2, p. 31. 

(7) The applicability of this relation to systems in which the flows 
interact is discussed briefly in footnote 19 of ref. 3. 

11 , a n d u t i l i z a t i o n of e q u a t i o n 16 y ie lds t h e re la ­
t i o n s 

Ha - FB = -

Ga - E3 = 

d a 
A-q 

A0 

(24) 

(25) 

w h i c h m a y b e so lved t o o b t a i n a se t of d i f ferent ia l 
e q u a t i o n s of t h e second o r d e r for a a n d j3. 

^2 + (E+ H)^ + (EH-

• FG)a = 0 (26) 

FG)B = 0 (27) 

T h e g e n e r a l so lu t i ons of t h i s s e t of e q u a t i o n s a r e 8 

a = P+e~°+n + P-e-'-v (28) 

8 = Q+e-'+v + Q-e-'-v (29) 

w h e r e P+, P-, Q+ a n d Q- a r e i n t e g r a t i o n c o n s t a n t s 
t o b e d e t e r m i n e d a n d 

«•+ IH+ E+ [(H- E)2 + 4FG]1A) (30) 

- ! < * • 
E - [(H- EY + 4FG]1A) (31) 

If e i t he r Du or D2\ is ze ro , t h e s e e q u a t i o n s for <r+ 
a n d a- r e d u c e t o s i m p l e e x p r e s s i o n s : for e x a m p l e , 
if D 2 2 > A i , t h e y b e c o m e 

*+ = 1 /Du 

<7_ = 1/D22 

(32) 

(33) 

R e l a t i o n s b e t w e e n P+ a n d Q+, a n d P- a n d Q-, 
in e q u a t i o n s 2 8 a n d 29 a r e o b t a i n e d b y s u b s t i t u t ­
ing t h e s e e q u a t i o n s i n t o e i t he r e q u a t i o n 24 o r 25 . 
T h e n b e c a u s e in gene ra l a+ 9^ a-, w e o b t a i n 

- (^)'- - (rh;h JrI 

'H 

— 
F 

-

(T+ 

(T-

0- - (^)'- - (r^)'-

(34) 

(35) 

S u b s t i t u t i o n of e q u a t i o n s 28 , 29, 34, 35 a n d 16 i n t o 
e q u a t i o n s 18 a n d 19, i n t e g r a t i o n , a n d a p p l i c a t i o n of 
b o u n d a r y c o n d i t i o n s 12 a n d 13 p e r m i t s d e t e r m i n a ­
t i o n of P+ a n d P-

VTT(X+ L 

°_ = -4= P 

((T+ - E)ACi - FAC2 

(a- - B)ACi FAC2' 

(36) 

(37) 

a n d also t h e c o n s t a n t s of i n t e g r a t i o n . T h u s t h e 
des i r ed e x a c t s o l u t i o n s for t h e s o l u t e c o n c e n t r a t i o n s 
b e c o m e 9 

Ci = Ci + KtHV^y) + Kr Q(V^y) (38) 

C2 = C2 + KtHV^y) + K2-$( V^y) (39) 

in w h i c h 

* (g ) 
2_ Ca 

~s2 Aq (40) 

(8) See, for example, H. Margenau and G. M. Murphy, "The 
Mathematics of Physics and Chemistry," D. Van Nostrand Co., Inc., 
New York, N. Y., 1950, p. 48 ft*. 

(9) When either Dn or Dn is sufficiently small, equations 38 and 39 
can be expanded to give the series solutions derived previously (equa­
tions 22 and 23 of ref. 3). 
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and1 

Kr 

Kt 

K7 

(<r+ - E)AC1 - FAC2 

2 ( ( J + — CT-) 

(a_ - E)AG - FAC2 

(*+ 

2(<r- - a+! 

- ff)AC2 - CACi 
2(<r+ - a-) 

(a- ~ H)AC2 - GAC1 

(41) 

(42) 

(43) 

(44) 
2(<r- - (7+) 

I t should be noted t ha t the equation thus obtained 
for each solute concentration is a linear combination 
of two probability integrals (plus a constant term), 
the characteristics of each term depending on ACi, 
Ad and the four diffusion coefficients. 

The Refractive Index Distribution.—To derive 
equations for use with the several optical methods 
for studying free diffusion, it is assumed t ha t the 
refractive index, n, in the three-component system 
is adequately represented by 

n = n-c + R1(C1 - C1) + R1(C2 - C2) (45) 

Here n~c is the refractive index of a solution in which 
the solute concentrations are Ci and Ci, while Ri 
and Ri are the differential refractive index incre­
ments 1 1 of the solutes in t ha t solution. Solute frac­
tions on the basis of refractive index are defined by 

U1 = R1AC1IAn (46) 

a2 = R2AC2/An (47) 

where An is the total refractive index change across 
the diffusing boundary. 

An = .R1AC1 + .R2AC2 (48) 

Equat ions 38 and 39 are then substi tuted into equa­
tion 45 to give the desired expression for the re­
fractive index distribution curve 

re = n-c+ (An/2) [T+Q(V^y) + r_ S (V^y) ] (49) 

where 
T+ = (2/An)(A1X1

+ + R2Kt) 
[(T+-E- (R2ZR1)G]Ca + [(T+ 

(T+ — (J-

Y- = (2/An)(R1KZ + R2K^) 
[<r_ - E - (R2ZR1)G]011 + W-

- H - (R1ZR2)F]CC2 

(50) 

- H - (R1ZR2)FU2 

(51) 

(10) In terms of the four diffusion coefficients, equations 41 and 42 
become 

Because equation 49 has the same mathematical 
form as the refractive index expression for the case 
of two solutes diffusing independently, and because 

r + + r_ = l (52) 

which follows from equations 50 and 51, all of the 
equations relating to refractive index measure­
ments which have been derived for the case of inde­
pendent diffusion in three-component systems may 
be applied to the present case by making a simple 
redefinition of terms.1 2 

Evaluation of the Diffusion Coefficients from 
Measurements of the Reduced Height-Area Ratios 
and Reduced Second Moments.—The reduced 
height-area rat io3 is defined by1 3 

(Are)2 

K A — 4:Ttl(bn/dx)t}l„ 

and the reduced second moment2 by 

S)2ID " 
OT2 

"27 

(53) 

(54) 

where m^ is the second moment of the refractive 
index gradient curve a t t ime t. Substi tution of 
the maximum value of the first derivative of equa­
tion 49 with respect to x into equation 53 yields 

i / V K I = T+V^ + r _ v ? r (55) 

which, by making use of the obvious relation ^1 + 
« 2 = 1 , may be written 

1 / V S A = IA + SACK (56) 

Thus , a graph of 1/y/Wk versus ax is a straight line 
with slope 5 A , intercept TA a t o?i = 0, and intercept 
L A at « I = 1. 

H + (RiZRi)F - E - (R2ZR1)G 
•y/a+~ + -Va-

VrT^ + E- (R1ZR2)F 

SA 

IA = 

IA + SA = 

+_£ -
•\/<r+ + \/1TZ 

V^T?r + H- (R2ZR1)G 

(57) 

(58) 

(59) 

Kt = 
[(D22 - D11) + [(Dn - D11Y + 4A2^21]

1A 

K1 = -

4[(D22 - Ai)2 + 4A2A1]1A 

((A2 - A i ) - [(A2 - A i )2 + 4AsA1]VM AC1 
4[(A2 - Ai)2 + 4A2A1]V 

Expressions for Ki and iCa~ are obtained from K1
+ and Kf, respec­

tively, simply by interchanging subscripts 1 and 2 throughout 
Equations 30 and 31 may be written 

CT+ = 

1 UA2 + A i ) + [(A2 - Ai)2 + 4A2Al1A 
2 

\A7+ + \/<r_ 

Similarly, it is shown14 t ha t S)21n is a linear func­
tion of (Xi. 

3)2m = 12m + S2m CC1 (60) 

where the slope 52m is 

52m = Ai + (R2ZR1)D21 - A2 - (RiZR2)D12 (61) 

and the intercept Ism a t «1 = 0 is 
hm = A 2 + (R1ZR2)D12 (62) 

A C 1 - 2A2AC2 The intercept at ai = 1 is 
• ^ 2 m — l2m + 52m = Ai + (R2ZR1)Dn (63) 

A2AC2 , ,„ , Because it follows from equations 
30, 31 and 17 tha t 

(7+cr_ = EH - FG = \Dij\~1 (64) 

(42a) 

(A2 + A i ) + [(A2 - Ai)2 + 4A2Ai 
A 1A 2

 — A 2 A 1 

and 

(V^ + rizy = (Ai + As (65) 

(30a) 

1 UA2 + A i ) - [(A2 - A i )2 + 4A2Ai]1Aj 
2 \ D11D22 - D12Dn \ 

(31a) 

In these equations the square root term is seen to be invariant to ex­
change of subscripts 1 and 2. 

(11) See equation 7 of ref. 2 for an equation denning Ri and Rz. 

(12) The deviation from this principle which was observed in the 
higher terms in equations in ref. 3 resulted because in that derivation 
probability integrals occurred in the form ^(y/y/Du), instead of 

etc. 
(13) This definition is restricted to the simple case in which the 

refractive index gradient curve has only one maximum; see footnote 
25 of ref. 3. 

(14) By eliminating aj from equation 27 of ref. 2 using ai = 
1 - « i . 

file:///Dij/~1
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equations 57 and 61 can be combined to give 

ID41-I(Ai + A2 + 2\/iA7i) - (52m/5A)2 = 0 (66) 

and similarly equations 57, 58, 61 and 62 give 

Ai + A2 = Am - / A ( W S A ) - V7TA^I (67) 

Elimination of Dn + D22 from these relations leads 
to a cubic equation 

(V1A7 | ) 3 + [Am - / A ( - W S A ) ! ( V T A / | ) 2 -
(S2 m /SA)2 = 0 (68) 

from which \Dtj\ may be evaluated either numeri­
cally or graphically. 

Combination of equations 62, 63 and 17 gives 

AmAl + L2mD22 = |A,-| + A (69) 

As the value of |Z?#| is now known, equations 67 
and 69 are readily solved for Dn and D22. 

Dn = - [IA1-I + UWWv\ +I-2mJA52m/SA]/S2m (70) 
A2 = [|A,-| + AmVlA^I + AmZ-A.W SA]/S2111 (71) 

Substi tution of these results into equations 62 and 
63 permits solution for D^ and Dn providing t ha t 
the value of Ri/Rn has been measured. 

Evaluation of the Cross-Term Diffusion Coef­
ficients from Gouy Fringe Deviation Graphs.— 
The method described above for calculation of the 
four diffusion coefficients is self-contained from 
the theoretical point of view and is useful for prac­
tical purposes. I t should be noted, however, t ha t 
experimental values of SD2m are usually less accurate 
than those of DA, SO tha t the diffusion coefficient 
values obtained by tha t method may be subject to 
some uncertainty. Therefore, another calculation 
method is developed which is based primarily on 
the values of D A and the fringe deviation graphs3-15 

measured directly with the Gouy diffusiometer. 
This method consists of two par t s : first the cross-
term diffusion coefficients are evaluated using 
either method " a " or " b " below; then the proce­
dure described in the following section is employed 
to determine the main diffusion coefficients. 

When (j-lV+ is close to unity, the fringe devia­
tion graphs, O versus f (f), are described by the rela­
tion16 

Krt - i w + r _ ( ^ E - i)2{i + | (Vg - i)[i -

8r_ - 2f*(i - 2r_)] + O ( y ± : - i ) a I (72) 

Here 0(f) is the reduced fringe deviation corre­
sponding to a modified cell coordinate f. In prac­
tice only the reduced fringe number, f(f), is evalu­
ated; the functional form of f(f) has been given 
previously.17 At a value of f = \/2, for which 
f(f) = 0.73854, equation 72 simplifies to 

n(V2) = 2e-2 (2 - y ^ = ) r + r_ ( ^ - l Y (73) 

(13) D. F. Alceley and L. J. Gosting, THIS JOURNAL, 75, 5685 
(1953). 

(16) Because equation 49 is identical in form with the corresponding 
relations for the case in which no interaction of solute flows occurs, the 
equations in ref. 15 are completely applicable to Gouy fringe measure­
ments on three-component systems with interacting flows by simply 
replacing a\, ai, 1/Di, l/Dz and rz in those equations by IV , T- , 
17T , a- and o--/0"+ , respectively (when Z?s2 > Du). In this way equa­
tion 72 was obtained from equation 27 of ref. 15. 

(17) See equation 12 of G. Kegeles and L. J. Gosting, THIS JOURNAL, 
69, 2516 (1947), or footnote 24 of ref. 15. 

if terms higher than the first order of {s/a-fa+ — 1) 
may be neglected in comparison with uni ty . Use 
of equations 50 and 51 to express the product 
r + r _ in terms of ai and a2, and simplification by 
means of equations 17, 30, 31, 57, 61 and 64, and 
the relation ai + a2 = 1, leads finally to 

r + r_ (J^. - i Y = ^ - [simaia2 + 

(D^- ( I )H <™ 
Equation 73 may therefore be written 

fi(V2) = - N \S2m aia2 + (R1ZR1)D12 -
[(R1ZR2)D12 +(Rt/R1)D21] ai] (75) 

in which 

N = -2e -2 f2 - J^.)-^- (76) 
\ TC+/ *J2m0 + 

1. Method a.—Denoting the value of Q ( \ / 2 ) a t 
ori = 0 by n°(\ /2)» equation 75 is wri t ten in the form 

(l~i) Al ~ 52m] + NS2m0ti (77) 

Thus a plot of [G(V2) - Q,°(V2)]/ai versus ax 

should be a straight line with slope Sa and intercept 
Ln at Qi1 = 1. 

Sa = A7S2111 (78) 
La = Nl(R1ZR2)D12 + (R2ZR1)D21] (79) 

Since 

0°(\/2) = - N(R1ZR2)D12 (80) 

from equation 75, (Ri/Rn)Du is obtained by sub­
sti tution of the value of N calculated from equation 
78. A value of (R2ZRi)D2I is then calculated from 
equation 79. 

I t should be noted tha t for this method a value of 
S2m is the only da tum required in addition to fringe 
deviation graphs a t several values of Ct1. This 
method is both self-contained and simple to use; 
however, in practice it was found (see "Applica­
tion") tha t accurate values of the cross-term diffu­
sion coefficients can be obtained only for systems 
with large, and hence accurate, values of SQ. 

2. Method b.—In this method equation 75 is 
written in the form 

fi(V2) _ /UA 
y h Jlmai«! (if I 12 """ 

[(D ̂  + (IW- (81) 

The constant N is computed from equation 76 us­
ing da ta for D A and D2 m to obtain diffusion coef­
ficients for approximate evaluation of <r+ and o-— 
If the value of N so obtained is correct, a plot of 
[ Q ( A / 2 ) / A 7 ] + S2nOtKx2 versus «i is a straight line 
giving directly the values of — (Ri/R2)Di2 and 
(R2/Ri)D2I a t the intercepts a i = 0 and ot\ = \, 
respectively. Usually the value of N computed by 
the above procedure is more accurate than the 
values of fi(\/2). If it is not, use of this method in 
conjunction with the following method for evalu­
ating Dn and D22 allows an improved value of N 
to be computed by a procedure of successive ap­
proximations. 
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Evaluation of the Main Diffusion Coefficients 
from the Cross-Term Diffusion Coefficients and 
Reduced Height-Area Ratios.—Although the main 
diffusion coefficients, A i and D22, are readily evalu­
ated from equations 62 and 63 when the cross-term 
diffusion coefficients are known, the values so ob­
tained may not be of satisfactory accuracy because 
of uncertainty in the experimental values of the 
reduced second moments. More reliable values 
may be obtained from the accurately measurable 
reduced height-area ratios by simultaneous solu­
tion of equations 57 and 58. In general this oper­
ation is very involved, and it is more convenient 
to resort to the following method of successive ap­
proximations. 

Using equations 17, 64 and 65, equation 57 is 
first converted to 

Sl]Di1][Dn + D22 + 2vT5^j] = 
[D22 - D11 + (R1ZR2)D12 - (R2ZR1)D21V (82) 

while equations 58 and 59 are combined to give 

LAD11 - IAD22 + S A V J A I = 
LA(R1ZR2)D12 - IA(R2ZR1)D21 (83) 

Into these equations we substitute 
D11 = DJ1(I + e0 (84) 
D22 = D2°2(l + e2) (85) 

where Dn and D\\ are approximate values of Dn 
and D22. After neglecting terms of higher orders 
than ei and e2, we obtain 

A1I1 + A2C2 = U (86) 

-B1E1 + B2*2 = V (87) 

in which 
= SADI1DI2 „ 

2Vl D,-,f 

A2 = ^ £ % - IADI2 (89) 
W\D(j\* 

B1 = DI1DUD0U + Dl2 + 3V\D~f) + DJ1ID^f -

f [> -«•+(!> -(SH <»> 
B2 = DI1DUDl1 + Dl2 + 3VlAyJ0) + Dl2 |A,-|° + 

? f [Dl1 - ^ + ( Q D 2 1 - ( I ) D 1 2 ] (91) 

U = Lj, ( J l ) D12 - JA ( J ) D21 + 7AD§2 -
LADI1 - 5AVfATp (92) 

' -£[*-* + (»*-(3)*L-
(Dl1 + DS2)IDi1-I" - 2(VlA1-I")' (93) 

and 
|A,|° = DhDl2 - D12D21 (94) 

Although any reasonable values may be used for 
the zeroth approximations, Dj1 and D\v in practice 
it is convenient to obtain these values from equa­
tions 70 and 71. Equations 86 and 87 are then 
solved for values of ei and «2, which are in turn sub­
stituted into equations 84 and 85 to yield the first 
approximations, D\t and D\v to the main diffusion 
coefficients. Using D\x and D\2 values in place of 
D°u and .D22 in equations 88-94, new values of ei 
and e2 are computed and used to obtain the second 

approximations to the main diffusion coefficients. 
This procedure may be repeated until the desired 
accuracy is obtained. 

Application 
The above procedures for calculating diffusion 

coefficients will now be illustrated by applying them 
to Gouy diffusiometer data which were obtained 
recently3 for the two systems, LiCl-KCl-H2O and 
LiCl-NaCl-H2O. Subscripts 1 and 2 will be used 
to denote LiCl and KCl, respectively, for the first 
system, while they denote LiCl and NaCl for the 
second system. For each system the solute frac­
tions on the basis of refractive index, a\ and a2, 
were varied from experiment to experiment, while 
Ci, as well as C2, was made the same in all the 
experiments in order to have the same diffusion 
coefficients and specific refractive increments 
throughout. 

Evaluation of Diffusion Coefficients from the Re­
duced Height-Area Ratios and Reduced Second 
Moments.—Figures 1 and 2 show, respectively, 
graphs of the experimental values of 1 / V E A versus 
on and £>2ra versus <xi for the two systems, which are 
seen to be linear in accordance with equations 56 
and 60. Straight lines were drawn through each 
set of points on large scale graphs and their slopes 
and intercepts are presented in Table I. After sub­
stitution of these values into equation 68 and solu­
tion for \Dij\, the values for Dn and D22 shown be­
low in Table II, method iii, were obtained from 
equations 70 and 71. Equations 62 and 63 were 
then solved for (Ri/Rt)Du and (R2/Ri)D21, which 
were converted to the values of Du and £>2i shown 
in the same line of Table II by using the factors 
Ri/R2 = 0.9086 for the LiCl-KCl-H2O system and 
Ri/R2 = 0.90O3 for the LiCl-NaCl-H2O system. 

TABLE I 

SLOPES AND INTERCEPTS OF REDUCED H E I G H T - A R E A AND 

SECOND MOMENT DATA FOR T W O SYSTEMS WITH INTERACT­

ING FLOWS 

T = 25°, e.g.s. units 
- -L iCl -KCl -H 2 O-- .—LiCl-NaCl-H2O-. 
Ci = CLIOI = 0.25" C1 = CLici = 0.25 

C2 = CKCI = 0.2 C2 = CN3CI = 0.2 

IA 235.08 262.78 

SA 40.12 14.37 
LA 275.2o 277.15 
I2m X 105 1.810 1.442 
S2m X 105 - 0 . 4 4 4 - 0 . 1 2 4 
L2m X 106 1.366 1.318 
|D,7 | X 10« 2.0908 1.5081 

" Concentrations are expressed in moles of solute per liter 
of solution. 

Evaluation of the Cross-term Diffusion Coef­
ficients from Gouy Fringe Deviation Graphs.— 
Smooth curves were drawn through the average 
fringe deviations18 of the several experiments and 
values of 0 ( \ / 2 ) were read off the curves at f (f) = 
0.7385. The method "a" of calculation is illus­
trated^ in Fig. 3, in which values of [Q(\/2) — 

are plotted against «i for the two sys-
(18) The curves were drawn through the crosses in Figs. 2, 2a and 3 

of ref. 3. 
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260 

IQ 

250 

230 

100 

O 

Fig. 1.—Linear relations of the reciprocal square root of 
reduced height-area ratio, 1 / V K A . against the refractive 
fraction of LiCl, <*i, for the two systems 

Fig. 2.—Linear relations of the reduced second moment, 
2>->m, against the refractive fraction of LiCl, au for the 
two systems. 

terns. An error of ± 1 X 10"4 in [Q(V2) - ft0-
( \ /2) ] is represented by the length of the vertical 
segments through the experimental points. Be­
cause the slope of these data for the LiCl-NaCl-
H2O system is so small, reliable diffusion coeffi­
cients cannot be evaluated; therefore, this method 
of analysis will be applied only to the LiCl-KCl-
H2O system. The slope and intercept of a straight 
line through these points were found to be Sn = 
-63.6 X 10~4and La = 32.0 X IQ-4, respectively. 

ai. 

Fig. 3.—Graphs for evaluation of the cross-term dif­
fusion coefficients from the fringe deviation graphs, method 
" a " : . . . ., computed using Dy values from method iii, 
Table I I ; , computed using .Dy values from method iv, 
Table I I . 

Substituting this S n value into equation 78, to­
gether with the value of S2m from Table I, we ob­
tain N = 1430. Because QP (V2) = 0.0 X 10-4 

a value of 0.0O0 X 10~6 is then obtained for (R1/ 
Ri)Du from equation 80, and insertion of La into 
equation 79 allows solution for (RiZRi)D2I = 
0.224 X 1O-6. For comparison with the experi­
mental points dotted and dashed lines correspond­
ing to the diffusion coefficient values obtained 
from methods iii and iv, respectively (Table II), 
were computed from equations 76, 78 and 79. 

Figure 4 illustrates method "b" of calculation, 
equation 81, in which values of [Q(-\/2)/N] + 

0.25 

O 

X 

8 
5 
a 

CO 

+ 

0.1 p 

0.05 

0.00' 

-0 ,05 

Fig. 4.—Graphs for evaluation of the cross-term diffusion 
coefficients from the fringe deviation graphs, method " b " ; 

, the straight lines which were drawn to fit best the 
experimental points. 
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Fig. 5.—Comparison of calculated with experimental 
Gouy fringe deviations for the LiCl-KCl-H2O system: 
X, average experimental values from ref. 3 ; , cal­
culated using Di] values from method iii, Table I I ; , 
calculated using Dy values from method iv, Table I I . 

Fig. 6.—Comparison of calculated with experimental 
Gouy fringe deviations for the LiCl-NaCl-H2O system: 
X, average experimental values from ref. 3 ; , cal­
culated using Da values from method iii, Table I I ; , 
calculated using Dn values from method iv. Table II. 

•SWaic^ are plotted versus ai to give — (RiZRz)Du 
as the intercept at at = 0 and (RiZRi)Dn as the 
intercept at ai = 1. To calculate the ordinates of 
this graph, the value of S2m was taken from Table I 
and N, equation 76, was approximated using the 
diffusion coefficients calculated from SDA and £>2m, 
method iii of Table II . I t should be noted that 
such approximations to Sim and N do not introduce 
appreciable errors into this calculation because 
both 52m and N are usually known more accurately 
than the values of 0 ( \ / 2 ) . From the intercepts in 
Fig. 4, and the values of RiZRz for both systems, the 
cross-term diffusion coefficients were evaluated and 
recorded in Table II, method iv. 

Evaluation of the Main Diffusion Coefficients 
from the Cross-term Diffusion Coefficients and the 
Reduced Height-Area Ratios.—The basic data 
for this calculation were the values of IA, SA and 
LA, Table I, and those of (R1ZR2)Dn and (R2ZRi)D2I 
obtained from the calculation method "b" above, 
Fig. 4. Values for Dn and D22 were computed from 
equations 84-94, using as the zeroth approxima­
tions to Dn and D22 the values obtained from SDA 



1106 HlROSHI FUJITA AND LOUIS J . GOSTING Vol. 78 

TABLE II 

COMPARISON OF VALUES OF THE DIFFUSION COEFFICIENTS COMPUTED BY FOUR DIFFERENT METHODS 

T = 25°, c.g.s. units 
-LiCl-KCl-H2O0-

CLIOI = 0.25" 
M e t h o d ^ D n X 10 ' 

1.172 
1.145 
1.154 
1.134 

Da X 105 

0.007 
- .007 
- .002 
- .0Oi 

Ckci 
D J I X 10» 

0.177 
.204 
.193 
.215 

= 0.2 
Da X 103 

1.8O3 

I . 8 I 7 
1.812 
1.81i 

-LiCl-NaCl-H2O6-
C1LiCl 

D n X 10« 

I.O69 

1.113 
1.099 

= 0.25 
Di! X 10 ' 

0.14i 

.081 

.100 
6 RJR, 

CN0CI = 0 . 2 
Dii X 10= D 2 ! x 1Q5 

0.225 

. I85 

.198 

1.316 

1.369 
1.351 

0.9003. Subscripts 1 and 2 de-" RJR2 = 0.9086. Subscripts 1 and 2 denote LiCl and KCl, respectively, 
note LiCl and NaCl, respectively. c Concentrations are expressed in moles of solute per liter of solution. d Method i is 
based on £>2m and SD|m (equations 34-37 in ref. 2). Method ii is based on 5DA, £>2m and £2-graphs (ref. 3). Method iii is based 
on 3DA and SD2m (equations 62, 63, 70 and 71). Method iv is based on SDA and ft-graphs (equations 81, 84-94). 

TABLE I I I 

COMPARISON OF COMPUTED AND EXPERIMENTAL VALUES OF SDA AND 5D2m 

T = 25°, c.g.s. units 
Method" of 
computing 

Dn, etc. 

iii 
iv 

iii 
iv 

(XLiCl 

(SDA X 1 0 6 W 
(2DA X 10s)oaicd. 
(SDA X 10B)oicd. 

(SD21n X 105)ob.d. 
(SD2m X lOOoalod. 
(2D2m X 106)calod. 

C1 

0.0008 

1.8099 
1.8090 
1.8092 

1.8099 
1.8096 
1.8096 

L i C l - K C l - H 2 O — z 

ici = 0.25 CKCI 

0.1002 

1.7488 
1.7492 
1.7493 

1.7651 
1.7655 
1.766o 

0.8303 

1.3893 
1.3883 
1.387g 

1.442i 
1.4413 
1.4455 

0 See Table II for numerical values of Dn. b auci = an. 

0.8309 

1.3891 
1.3881 
1.3876 

1.4441 
1.4411 
1.4452 

= 0.2 

0.9999 

1.3194 
1.3205 
1.32Oo 

1.3654 
1.366o 
1.3710 

CLICI 

0.0002 

1.4482 
1.4481 
1.4486 

1.4447 
1.442o 
1.441Q 

- L i C l - N a C l - H 2 O -
= 0.25 CNaCl 

0.2654 

1.4075 

1.407o 
1.4072 

1.4075 
1.4091 
1.4086 

0.6995 

1.3424 
1.3434 
1.3433 
1.3527 
1.3553 
1.3557 

= 0.2 

0.9997 

1.3030 
1.3019 
1.3016 

1.3212 
1.318o 
1.319Q 

and £>2m, Table I—method iii. Satisfactory con­
vergence was obtained with the second approxi­
mation, and the results are given in Table II, 
method iv. 

Discussion 

The values of the four diffusion coefficients, D,j, 
computed by four different methods for the two 
systems are compared in Table II. Here i and ii 
denote the two previous methods of calculation,2'3 

while iii and iv denote the methods developed in 
the present paper. I t will be noted that for both 
systems the values obtained for each diffusion coef­
ficient agree within 0.02 X 10-6, providing that we 
ignore those from method i which are believed to 
be less accurate because of the uncertainty in evalu­
ating the reduced fourth moments. 

In order to test the reliability of the sets of .De­
values computed using methods iii and iv, two kinds 
of comparison were made. First, for each set, 
values of ©A and 3}2m were computed from equa­
tions 56 and 60 and are compared with the experi­
mental values in Table III . Both sets of Dy val­
ues are seen to reproduce the experimental £>A and 
£>2m values satisfactorily, so that it is difficult to de­
cide from this comparison which method, iii or iv, 
is better. Next, for each set, fringe deviation 
graphs were calculated from equation 72 and are 
plotted in Figs. 5 and 6 where the average experi­

mental deviations are represented by crosses. The 
dashed and solid lines represent the computed devi­
ations corresponding to the Dy values from meth­
ods iii and iv, respectively. It is seen that for the 
LiCl-KCl-H2O system the values of Dy obtained 
from method iv give the better agreement. For 
the LiCl-NaCl-H2O system both sets of Dy values 
reproduce the experimental results within the ex­
pected error of measurement. 

Summarizing, it may be concluded that for these 
systems with <r-/a+ close to unity, so that equa­
tion 72 is applicable, method iv yields somewhat 
better results than method iii. However, it should 
be remembered that the procedures involved in 
method iii are much simpler and less laborious than 
those in method iv. It is hoped that these meth­
ods for computing the diffusion coefficients in three-
component systems will be subjected to further 
tests using other systems. 
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